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VW shall briefly review the current approach to regual tory environ-
mental heath risk analysis, focusing on the context of pesticides. W
then offer a fundanental criticismof this approach, propose an alterna-
tive general approach based on Mnte-Carlo sinulation, and provide an
exanple of its application in the area of cancer risk analysis for a

pestici de groundwater contam nant.

1. The Regul atory Cont ext

Regul atory risk analysis generally begins with an assessment of the

extent to which certain popul ation groups are exposed to a conpound
determned to have adverse health effects at some dose |evel. In the
context of pesticide risk assessnment in the context of EPA's "Rebuttable
Presunption Against Registration" (RPAR) procedure, the general approach
used involves a mxture of "averaging" and "worst-case" exposure
descriptions, although operational definitions for these terms are

rarely provided. For exanple, in setting chlorobenzilate residue toler-

ances the follow ng were used: average crop consunption estinates, aver-

aged dispersion estimtes which assume that an entire projected pesti-
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cide residue mass is distributed evenly throughout the entire U.S. crop
to which the pesticide is applied, and "reasonable upper limt" occupa-
tional exposure estimates based on maxi na of several sets of exposure

measurement neans (EPA, 1980a). In review ng EPA s exposure assessnent

approach, a National Acadeny of Sciences commttee concluded: "At
present the position docunents and supporting reports alnost invariably
violate [the principle of presenting unbiased exposure anal yses]. Indi-
cations of ranges of uncertainty are rare . . . [and] generally present as
estimates of exposure the single, upper-limt, 'worst case' values for

each exposed group” (NAS, 1980).

For chronic toxicity endpoints other than oncogenesis and nutation,
RPAR dose-response assessnents are nost often based on experimentally
derived "No (nserved Effect Levels (NCELS). It is assunmed that for
t hese endpoi nts the absence of any observed toxic response in a group of
experinental animals at a given dose level indicates that no such
response woul d have occurred even if the exposed group of animals were
nuch larger than that actually used. That is, the assunption is nade
that there is a threshold in the dose-response relationship for that
effect. Test results for at least two animal species are generally
required to nake a NOEL determnation (EPA 1982a). Human epi dem ol ogi -
cal data can also be used for this purpose, and positive human epi-
dem ol ogical findings will generally outweigh negative experinental test
results. In the context of regulating environmental pesticide exposure
l evel s, a "Maxi mum perm ssi bl e exposure level" (MPl) for humans is

derived from an experinmental NOEL by dividing by standard weight (e.g.,

70 kg) and by an appropriate safety factor (EPA, 1978). The safety fac-

tor is usually 100 but may be raised by a factor of fromtwo to ten or



nore in cases where there is very little toxicological data upon which
to base a risk analysis. (E g., in the context of regulating drinking
water contamnation, EPA sets ADIs using safety factors of 10, 100, or
1000 depending on the quality and quantity of available toxicological
data in accordance with recent National Acadeny of Sciences recomenda-

tions (NAS, 1978).)

In practice, an MPl in an RPAR risk determnation is conbined wth
a "worst case" public or occupational exposure assessnent to yield a

corresponding "margin of safey" (MXS) defined as:

MPI
(Proposed Exposure Level) °

The MOS serves as a rough guide to exposure acceptability for the regu-

MOS =

| atory decisionmaker. For exanple, a MX less than 1 generally is
regarded as unacceptabl e, whereas a MOS between 1 and 50 may indicate

that alternative regulatory strategies should be considered which night

act to |essen prospective exposures.

Dose-response assessnent in the context of regulating exposure to
t unor - causi ng agents has been far nore controversial than that for other
types OF toxic response. EPA dose-response assessnents for carcinogeni -
city have been based on the position that in a variety of regulatory
contexts a "linear non-threshold" nodel is the nmathematical nodel of
choice for extrapolation of cancer risk at very |low dose |evels (EPA,
1976; EPA, 1979a; IRLG 1979; EPA, 1980b; EPA, 1980c). A simlar posi-
tion is currently developing in regard to |owdose mutagenicity risk
extrapol ation (EPA, 1980d; NAS 1982). In the context of risk assessnent
for chemically induced tunors (in RPAR and other regul atory proceed-

ings), the specific linear nmodel used by EPA (Cancer Risk Assessnent



Goup, Ofice of Health and Environmental Assessnent) is the "linearized
mul tistage" nodel (Crunp, 1981). This nodel treats lifetime increased

cancer risk as the follow ng function of dose:

-(q1d + q2d2 + oees + qkdk)

>
~
[o}
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1

A(d) = -ID—%C-]—);—},—PE(Q—)— = Abbot's Correction

where
and where q; > 0, k < the nunber of experinmental dose groups, and d =
dose. Maximum |ikelihood procedures to estimate nultistage paraneters
from di chot omous tunor response data have been devel oped (CQuess and
Crunp, 1976, 1978a, 1978p; Cuess et al., 1977, Cunp et al., 1977,

Crunp, 1981). Using these procedures, maxinumlikelihood estimtes of

q; are obtained and then a 95% upper confidence limt of q,is calcu-

* . .
lated (= g,) consistent with g = 2,3,..., k. Increased |ow dose

50
cancer risk is then calculated by the fornula

¥
A(d) = q1d ’
intended to represent "the nost plausible upper limt" of the additional

risk (Anderson, 1977; EPA, 1980c).

The point of the "linearized nultistage" nodel, then, is to calcu-
late a "nmaxinum plausible" risk rather than a "nost |ikley" risk. Max-
imum |ikelihood risk estimate's based on the "linearized multistage"
nodel can be many orders of magnitude |ower than those produced by the
sinpler one-hit nodel, depending on the nature of the data anal yzed.
However,  95% upper confidence risk estinmates base on these two nodel s
will rarely differ by as much as an order of nmagnitude regardl ess of the

underlying data (Crunp, 1981). This is so because 'c‘11 is always allowed
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to be equal to zero in this nmodel, whereas its cal cul ated upper confi -

o L .
dence limt a1 will always be greater than zero and generate a |inear

termthat predom nates at |ow doses. radiation in many contexts

The exposure and dose-response assessnent net hodol ogi es di scussed
which are currently used in the RPAR risk anal ysis process suffer froma
failure to incorporate any explicit consideration of uncertainty in the
dose-response relationship that is selected for use in a final risk
analysis. For the first class of toxic endpoints discussed, the response
of interest is zero-response, for which the corresponding hi ghest dose
is extrapolated by dividing a no-observed effect level by a safety fac-
tor without regard to the statistical reliability of the NOEL. The use
of generic safety factors itself precludes the explicit treatnent of
uncertainty in dose-response asssessment. The | owdose cancer risk
extrapol ation nodel used by EPA for pesticide and other chemcal carci-
nogens or suspected carcinogens is explicitly designed to yield a "plau-
sible worst case" dose-response relationship, despite the fact that the
underlying "linearized nultistage" model is quite capable of generating
maxi mum | i kel i hood functions and plausible representations of their
associ ated uncertainty given the variability in the experinental tunor
response data used to derive those functions. A though ranges of uncer-
tainty may be included in exposure assessments, there is currently no
formal incorporation of this information into risk analysis and subse-

quent deci si on-maki ng procedures.

2. A Monte-Carl o Approach

W propose that all information regarding uncertainty or variabil-
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ity in variables that feed into a risk aanalysis be explicity included
in the formal analysis in a way that yields the best characterization
possible of true "risk", i.e., in away that produces a probabilistic
assessnent of forseeable harm In the context of a pesticide risk
analysis, a traditional risk assessment framework considers the various
pat hways which a given chemcal can be transmtted through the environ-
ment resulting in human exposure, i.e., absorption at the principle body
barriers such as lung, skin, or gut. The exposure process is controlled
by the level at which a relevent environment is contamnated (c) and the
absorption rate (a), which together deternmine the dose rate, whcih in
turn, when properly integrated over time, yields the dose (d) to a given
popul ation. A dose-response relationship P(d) then determnes the
expected response conditional on the assunptions use to generate c, a

d, and P(d).

We woul d repl ace the above determnistic nodel wth an anal ogous
one which explicitly incorporates either randomvariability or a priori
uncertainty or both. In particular, the variables above can be treated
as non-negative random variables C, A and D and P(d) can be treated as
a stochastic function of a random variable to generate a treatment of
risk itself as a randomvariable, i.e., to generate a |ikelihood distri-
bution of levels of harm that characterize a given environnental risk

The steps involved in conbining the inputs to get a response distribu-

tion is depicted in Figure 1, which expresses the follow ng equations:

-t ¢
FD(d) = ’| \lfC(C) fA(a) dC da



R = P(D

where F and f are the cunulative distribution and probability density
functions, respectively, of their subscripted variables and where P(d)
i's understood to be itself a function with uncertainty in its paraneter
set H  The analytic form of a "risk distribution" (nore precisely, a
probability density function for the magnitude of anticipated adverse
health inpact) can be quite intractable in this context, depending on
the conplexity of f.(e),f,(a), and fy(h) . For exanple, if Cand A could
both be nodel ed as | og-nornmal variables, then D would also be |og-
normal . Assume further that P(d) were a "one-hit" function, i.e., the
sinplest type of nultistage nodel having only a linear paraneter, and
that this paraneter, say Q could also follows a log-normal distribu-
tion. It follows that

R = P(D) = P(CA) = G(T) = 1 -e "
where T is also a log-normally distributed variable.

In this case, we derive FR(r) as foll ows:

-1
=1 dg” ' (r)

]
r 1/2(1n[1n(1'“)] ~ 5
Fp(r) = §— ! — e S
3 \i2¢ s (1-u) 1n(m)

where mand s are the logarithns of T's geonetric. nean and standard

deviation, respectively. Thus, in this case fp(r) is a sinple transform

of a log-normal density function.

In general, such derivations would not be so straightforward. W
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have therefore enployed a Mnte-Carlo approach to the derivation of
Fp(r), the cunul ative distribution of risk to a given popul ation, Once
again, a point on Fr indicates that the corresponding |level of harmor a
| esser level is anticipated to occur with the corresponding |ikelihood,
given the variability and/or a priori uncertainty associated with the
random inputs, and as such can represent either a population risk (a
probability that a given fraction of a population will be affected) or
an individual risk (a probability of facing a given probability of
harm . If Nis the size of a |arge exposed popul ation, the nunber of

induced cases N, would be less than or equal to Ntimes r, wth proba-

1
bility Fplro). The mat henati cal expectation of N, is simply Ntimes the
mean value of R Thus, the distribution Fp(r) allows one to nmake proba-
bility statenents about either the size or the proportion of an exposed

popul ation which will respond.

In using the nethodol ogy described, care nust be taken to delineate
what portion of a derived Fp(r) is due to paranetric variability
expected to be encountered "in the field" and what portionis due to a
priori uncertainties incorporated into the analysis to reflect fundamen-
tal gaps in know edge concerning the causal |inks between contam nation,
exposure and toxic response. These two sources of uncertainty can have
very different inplications to industrial or regulatory policy-makers
for whom such an analysis would be carried out. O course, the final
risk distribution generated will reflect reality only to the degree that

(a) the processes involved have been nodel ed accurately and (b) their

stochasticity and uncertainties have been reasonably accounted for. The
advantage of the approach, however, is that it allows the analyst to

explicitly consider uncertainty in the health risks considered to the



extent feasible, in a way that can reflect both natural variabilities in

contam nation, exposure and response and the uncertainties reasonbly

implied by the use of basic inference bridges intrinsic to nost health

risk assessnent, particularly regarding chronic health risks like those

posed by environnental carcinogens.

3. Illustrative Application: Reappraisal of DBCP Cancer Risk

We have applied the described Mnte-Carlo approach to a reassess-
ment of cancer risk posed by the nematocide dibronmochl oropropane (DBCP)
found in groundwater in Fresno County, California. DBCP was a popul ar
and effective chemcal used to control nenmatodes on a variety of inpor-
tant crops in the United States. In 1977 DBCP was inplicated in the
generation of adverse reproductive effects in male pesticide workers
and was subsequently banned for nost agricultrual uses in the United
States. DBCP was found to be carcinogenic in mce and rats in severa
studies conducted between 1972 and 1979. In this context, a water sam
pling programfor the detection of DBCP contam nation in the San Joaquin
Val l ey and Southern California was initiated in 1979 and carried out
over several years by the Water Hygiene group of the California Depart-
ment of Health Services. In this survey all significant water sources
serving the Fresno County popul ation were assessed as it becane apparent
that many wells in this county were contam nated to sone degree. This
contam nation data was used by Jackson et al. (1982) to perform an epi-
dem ol ogi cal conparison of DBCP drinking water contamnation wth mnor-
tality rates from selected cancers for that county between 1970 and
1979, a study which detected positive associations between cancer

i nci dence and DBCP contam nation |level, particularly for stomach cancer
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in males.

To obtain a conprehensive map of DBCP contam nation of Fresno
County drinking water, Jackson et al. combined DBCP contamination data
fromlarge and smal|l water systenms with information on annual flow rates
in an algorithmto obtain a weighted average DBCP concentration val ue
for each of 108 (1974/1980) census tracts in the county. In this study,
however, census tracts were aggregated into only three DBCP exposure
| evel categories: LON(0-0.05 ppb), MEDI UM (0.05-1.0 ppb), and HHICH (>
1.0 ppb). For our purposes it was desirable to reconstruct the entire
distribution of DBCP concentration levels for all census tracts, whi ch
was possible through the gracious supply of the original analysis by Dr.
Jackson, who used 1974 nid-census popul ation figures. This resulted in
an enpirical concentration distribution function with 33 concentration
categories ranging from 0.001 ppb (the original <0.005 ppb category was
assigned the m dpoint value 0.0025 ppb) to 8.4 ppb (nean = 0.792 ppb,
s.d. = 1.65 ppb, median = 0.119 ppb, 95th %le = 5.32 ppb, geom nean =
0.0669 ppb, geom s.d. = 15.66). Fresno County included 514,621 people
as of the 1980 census, which differed little in total or by census tract

fromthe 1974 m d-census figures.

In our analysis it is assuned, as in the Jackson et al. study, that
the enpirical contamnation distribution derived reflects persistent
concentration levels, although for our purposes it is only necessary
that the distribution itself be persistent, rather than its geographic
fixture. In the face of such a broad distribution of contam nation, it
was apparent that mnor fluctuations in water consunption would have

little effect on response. The standard assunption was made that water
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intake averages 2 liters per 70 kg per day for the Fresno popul ation

but that average consunption does vary |og-normally such that 95% of the
peopl e drink between Miltiplying concentration (in ppb = ug/liter) by
wei ght - standardi zed intake (in liters/kg/day) yields a dose rate (in ng
DBCP/ kg/ day) . Dermal absorption of DBCP, e.g., during bathing, was not

considered in this analysis.

For the purpose of this illustrative analysis the dose-response
rel ationship for DBCP-induced tunorigenesis was assunmed to follow a
"one-hit" nodel, in accordance with the re-eval uation of DBCP carci no-
genicity undertaken by EPA' s Carcinogen Assessment Goup (EPA 1979b)
The data selected to form the basis of the |owdose risk extrapolation
were those from Hazelton, 1978, on DBCP-induced stonmach, liver and kyd-
ney tumors in male rats. (This by itself constitutes a significant bias
in that this was the nost sensitive aninal sex and species identified
for DBCP's carcinogenic effect.) As in that analysis, the single nost
effective dose |level was selected to generate a "best fit" (in this case
"only fit") one-hit slope parameter (with units of risk/(nmg/kg/day)) for
each tunor type. EPA's 95% upper confidence slope paraneter values were
then used to derive reasonable forns of uncertainty in the slope parane-
ters. Here two approaches were taken. The first approach was to assune
that these parameters follow a O-truncated nornmal distribution, with
mean paraneter equal to the best-fit value, in accordance with the
theoretical expectation that the randomvariability in the linear param
eter, which is constrained to be positive, asynptotically approaches
nornmal ity when it can be assuned apriori to be different from O (Crunp
et al., 1977). This approach was used to derive results depicted in

Figures 2-6. The second approach was to assune that the |inear
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paraneter follows a |og-nornmal distribution, with nedian equal to the
best-fit value. This appraoch was used to derive the results shown in
Figure 7, where "P(d)" is referred to now as Qd) to enphasize the
difference in approach. W note that when the full "linearized nultis-
tage" procedure is used to generate risk extrapolations, an attractive
way to model the uncertainty in the linear term (which will, in fact,
dom nate the variability in the function P(d)) is to use the non-
linearly transformed Chi-square distribution inplied by the associated
met hod used to generate confidence limts on risks and "safe" doses,
namel y
In(Lg) - In(ly_p) = 0.5%3 1o

where L is the likelihood function of P(d) described by Crunp (1981) and
a is the one-tailed significance |evel associated with q?, the recal cu-
lated linear paraneter in P(d). We also note that in the assessnent
Cted, the Carcinogen Assessnent G oup added together its upper 95% con-
fidence levels, which is clearly inappropriate, (A reevaluation of DBCP

carcinogenicity has just been conpleted by CAG we understand.)

The results of our reappraisal of DBCP cancer risk using a Mnte-
Carlo approach are presented in Figures 2-7. Figures 2 and 7 reflect
all uncertainty sources considered, as discussed above. In Figures 3-6,
we have "filtered" various wuncertainty sources to demonstrate their
inpact on total uncertainty. Note that the term "uncertainty” in the
figures is nmeant to refer to both randomvariability and a priori uncer-
tainty. In the present case, the variables C and A represent enprirical
(in the case of A sem-enpirical) variability, whereas the selection of

the analytic formof P(d) and the formof its stochasticity entails a
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|arge degree of a priori uncertainty. But there is no reason why a rea-
sonabl e representation of the latter uncertainty mght not also be
included in the analysis if it were felt that reliance on, e.g., only
one | owdose extrapol ation nmodel is excessively unrealistic or scientif-
i cally unsound. A conparative appraisal of DBCP cancer risk prepared
recently by Shell Q1| Conpany appears to be in this vein (Shell, 1983).
However, the Shell report presents only maxinum |ikelihood risk val ues
associated with DBCP exposure according to five different |ow dose
extrapol ation nodels, and geonetric means of these maxi mum |ikelihood
val ues; they made no attenpt to extend their analysis to the range of

other wuncertainties involved.

A summary of the results presented in Figures 2-7 appears in Figure
8. W feel that Figure 8 illustrates a way to present the output of
Monte-Carlo risk anal yses such as this which is readily comunicabl e and
useful to the regulatory decisionmaker as a summary of the technica
apprai sal of a given health risk and its associated uncertainty. The
precise results can also be used for nore in-depth policy analysis which

woul d incorporate econonic and other considerations bearing on risk
management i ssues. In sunmary, we note a key feature of the DBCP risk
anal ysis undertaken. The contam nation distribution clearly dom nates
the variability present in the derived Fp(r). This is to be expected
since its 95% range spans close to 4 orders of magnitude--well above
that for the absorption and dose-response variables. The skewness of
the contami nation distribution has a pronounced effect on the mean risk
level, which is a clear denmonstration that including uncertainty in risk
anal ysis can significantly affect the anal ytic outcome even wth respect

to the sinplest desriptors. This is intuitive on recalling that skewed
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distributions (such as log-normal ditributions) becone even nore skewed
when multiplied together, as we have done in this exanple, and that the
greater the right-skewness a distribution has, the greater is the

di fference between its nmean and nedi an val ues.
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Figure 3: UNCERTAINTY IN a and P(d)
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Figure 6: UNCERTAINTY IN P(d)
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Figure 8: DBCP CANCER RISK UNCERTAINTY:
COMPARATIVE ANALYSIS
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